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Abstract—Vegetation detection from satellite imagery is
essential for ecological monitoring, agricultural planning,
and land use analysis. Traditional supervised methods
often demand extensive labeled datasets, which are time-
consuming to prepare. This study presents a hybrid
unsupervised-to-supervised framework for vegetation de-
tection using unlabelled multispectral satellite imagery.
Initially, vegetation pixels are labelled using NDVI thresh-
olding, while water regions are excluded via NDWI-based
masking. These selected pixels undergo dimensionality
reduction using Principal Component Analysis (PCA) and
are clustered using k-means++. The clustered pixels with
the highest NDVI mean are labelled as vegetation, forming
labels used to train a Random Forest classifier. The trained
model then classifies the entire image, producing a refined
vegetation map by reapplying NDWI to exclude riverine
areas. Validation through Precision, Recall, F1 Score, Accu-
racy, AUC-ROC, Confusion matrix, Davies–Bouldin Score,
and Dunn Index confirms effective clustering, and visual
outputs highlight the framework’s reliability. This method
offers a scalable, label-free approach that provides an
interpretable and efficient solution for vegetation mapping
in complex landscapes.

Index Terms—vegetation mapping, k-means++, Random
Forest, NDVI, NDWI.

I. INTRODUCTION

Vegetation detection and mapping play a vital role
in environmental monitoring, agricultural assessment,
land cover classification, and ecological conservation.
Traditional vegetation mapping techniques used super-
vised learning methods that require large amounts of
labelled data, which is not always available for remote
regions. This challenge motivates the development of
semi-supervised or hybrid methodologies that can lever-
age unlabelled data to generate reliable vegetation masks
with minimal manual intervention. Vegetation indices
such as the Normalized Difference Vegetation Index

(NDVI) [1] is widely used to detect the photosynthet-
ically active regions. However, particularly in diverse
landscapes, the threshold-based NDVI segmentation may
incorrectly classify non-vegetation areas with compara-
ble spectral reflectance, like water bodies. In order to
improve vegetation accuracy and eliminate such restric-
tions, the Normalised Difference Water Index (NDWI) is
frequently used to isolate water features, such as rivers
and wetlands.

This study proposes a hybrid unsupervised-supervised
pipeline for vegetation detection using k-means++ clus-
tering and a Random Forest (RF) classifier, applied
on multispectral satellite imagery. The method first
identifies high-confidence vegetation pixels by applying
NDVI-based thresholding and removes water regions
detected via NDWI. Then the pixels are reduced in di-
mensionality using Principal Component Analysis (PCA)
and clustered using k-means++. The cluster with the
highest NDVI mean is labeled as vegetation, creating a
binary label set for training a supervised Random Forest
model. The train set is applied to the image to produce
a dense vegetation map.

This method enhances the unsupervised learning for
initial label generation and supervised learning for spatial
generalization. It eliminates the need for manually la-
belled ground truth while maintaining high classification
accuracy. Furthermore, the Davies–Bouldin Score and
Dunn Index are used to evaluate clustering quality. The
accuracy, precision, recall, F1 Score, and Cohen’s kappa
score for classification are evaluated to validate the
proposed method. The results are also supported by com-
prehensive visualizations demonstrating the effectiveness
of the proposed framework.

The rest of the paper is organized as follows. Section



II presents related work in the field, followed by Section
III where data description is discussed, and Section IV
presents the proposed methodology of the paper. Then,
the results and discussion are given in section V. Finally,
we conclude this study in section VI.

II. RELATED WORK

Decades of research have been focused on improving
the accuracy and efficiency of vegetation detection from
multispectral imagery, making it a fundamental topic in
the field of remote sensing. Vegetation monitoring was
revolutionized by the introduction of spectral indices
in early landmark studies. Due to its sensitivity to
chlorophyll content, the Normalized Difference Vegeta-
tion Index (NDVI), first presented by Tucker [2] and
popularized by Rouse et al. work with ERTS data [3], is
still one of the most widely used indicators. Because
it compares red and near-infrared (NIR) reflectance,
the NDVI is a very useful tool for identifying areas
that are vegetation or non-vegetation. Using green and
NIR bands to improve open water detection, McFeeters
[4] proposed the Normalized Difference Water Index
(NDWI) to improve class separability in complex en-
vironments.

In order to suppress built-up area interference, Xu et
al. later modified the NDWI by substituting shortwave
infrared (SWIR) for near-infrared (NIR) [5]. Based on
the NIR and SWIR1 bands, Gao’s version of NDWI is
proposed to directly estimate the water content of vege-
tation from satellite imagery [6]. According to Jackson
et al. [7], these indices are used to map vegetation and
water features as well as pre-filter input data for machine
learning pipelines, which reduce noise and enhances
class separability.

Principal Component Analysis (PCA) is a popular
preprocessing step to address the high dimensionality
present in multispectral and hyperspectral data. Dimen-
sionality reduction improves computational efficiency
and feature selection for classification tasks, as demon-
strated by Maćkiewicz et al. [8] and later applied by
Ali, UA Md Ehsan and Hossain, [9] in the field of
hyperspectral image classification.

The computational simplicity of clustering algo-
rithms, particularly KMeans and its enhanced variant k-
means++, has made them popular for unsupervised clas-
sification tasks. Arthur and Vassilvitskii [10] proposed
k-means++ to improve initialization, which significantly
reduces the likelihood of poor local minima. Goud et
al. [11] achieved more dependable class separation by
applying an improved KMeans variant to hyperspectral
data. Ng et al. [12] provided additional evidence for the
efficacy of clustering in spectral data.

One of the most popular supervised classification
methods in remote sensing is Random Forest (RF), a

tree-based ensemble classifier. The usefulness of RF in
land cover classification was initially emphasized by
Pal [13] because of its resistance to overfitting and low
parameter tuning. Belgiu and Drăguţ [14], who empha-
sized the technological versatility in various data sets
and land cover types, provided a comprehensive analysis
of the uses of RF in remote sensing. The relevance
of RF in vegetation mapping was further demonstrated
by Kulkarni et al. [15], who demonstrated how RF
could predict forest attributes using multispectral and
ancillary data. Because they can use both labeled and
unlabeled data, hybrid pipelines that combine super-
vised classification and unsupervised segmentation are
becoming more and more popular. In order to improve
classification under class imbalance, Tzu-Tsung Wong et
al. [16] proposed a hybrid model that integrates RF and
clustering. Xizhen et al. [17] presented a semi-supervised
hyperspectral classification framework that significantly
improved spatial coherence by utilizing super-pixels and
Markov Random Fields. In situations where there is little
ground truth, semi-supervised learning has also proven
successful. Ziru Yu et al. used Generative Adversarial
Networks (GANs) [18] to improve the accuracy of hy-
perspectral classification and add to the limited training
data. Cho et al. [19] made a pseudo-label refinement
framework that deals with label noise in places with few
resources. In contrast, Willian Paraguassu Amorim et al.
[20] presented a semi-supervised CNN model utilizing
consistency regularization. To close the gap between
labeled and unlabeled data, Zhu et al. [21] also used
collaborative representation. These developments have
been contextualized within deep learning-based remote
sensing by broad surveys like Ma et al. [22] and Hu
et al. [23]. The combination of machine learning and
spectral indices for better vegetation classification is
further supported by comparative studies. To categorize
vegetation in mixed landscapes, Sheykhmousa et al.
[24] used support vector machine versus Random Forest
for remote sensing image classification. The efficacy of
decision-tree-based classification in operational mapping
was validated by Petropoulos et al. [25] through the
use of Landsat data and spectral indices. This was
expanded upon by Emmanuel Paradis [26], who used
unsupervised classification methods, like KMeans, for
large-scale analysis of spectral imaging data.

Despite significant progress in vegetation detection
using supervised and unsupervised learning approaches,
existing methods still exhibit critical limitations. Super-
vised classifiers like Random Forests or CNNs require
extensive labeled datasets, which are often unavailable,
particularly in ecologically diverse or remote regions.
On the other hand, methods that do not need super-
vision, like K-Means clustering, do not have a clear
meaning and often have trouble separating classes cor-



rectly, especially when pixels are mixed in frequency.
Researchers have suggested hybrid and semi-supervised
frameworks, but many of these methods depend on
domain-specific priors or deep learning models that need
much computing power and manual tuning. Moreover,
few studies systematically integrate spectral indices like
NDVI and NDWI with machine learning in a scalable,
interpretable pipeline for vegetation mapping. There is
a noticeable gap in lightweight, label-free frameworks
that can combine index-based filtering, clustering, and
classification to get high accuracy without much ground
truth data. This study fills in the gaps by suggesting a
mixed unsupervised-to-supervised framework that uses
k-means++ and Random Forest, with NDVI/NDWI-
driven vegetation and water masking as guides.

III. DATA COLLECTION

This study focuses on the Silchar region in the Barak
River basin in southern Assam, Northeast India. The area
is a representative site for testing vegetation segmenta-
tion techniques due to its rich heritage, vibrant culture,
and diverse landscape of vegetation, water bodies, and
built-up areas. The following geographic coordinates
bound the specific area of interest:

• 24.92051°N, 92.69716°E
• 24.91885°N, 92.89368°E
• 24.74158°N, 92.89336°E
• 24.74058°N, 92.69831°E

The study area is shown in Fig. 1, generated using QGIS
software with Google Maps base layer.

Fig. 1. Geographic extent of the study area in Silchar, Barak Valley.

IV. METHODOLOGY

In this section, we have discussed an unsupervised-to-
supervised method for vegetation detection using multi-
spectral satellite images. This section includes subsec-
tions of satellite data acquisition, vegetation and water
index calculation, selection of vegetation area, clustering

and dimensionality reduction, and Random Forest-based
classification.

Fig. 2. Proposed methodology using k-means++ and Random Forest

The methodology shown in Fig. 2, outlines a hybrid
approach for vegetation detection using multispectral
satellite data. The process involves normalizing spectral
bands and calculating NDVI and NDWI to identify
vegetation and water. PCA is used to reduce dimensions,
and k-means++ is used for clustering. Random Forest
classifier is used on these labels to predict vegetation,
excluding river areas.

Algorithm 1 describes the vegetation detection process
in detail. Six spectral bands are normalized to determine
vegetation and water regions, and NDVI and NDWI are
calculated. Vegetation pixels, high-NDVI, and non-river
pixels are chosen, and PCA is used to reduce them.
Clustering is done by k-means++, and vegetation is
identified using the highest mean NDVI. These pseudo-
labels are used to train a Random Forest classifier, which
is then applied to the entire image. NDWI is used to
refine the final vegetation mask by removing river areas.

A. Satellite Data Acquisition

The multispectral raster data contained a total of six
spectral bands: Blue, Green, Red, Near-Infrared [NIR],



Algorithm 1 Vegetation Detection via k-means++ and
Random Forest
Input: Multispectral bands: Blue, Green, Red, NIR,

SWIR1, SWIR2
Output: Binary vegetation mask Mfinal

1: Stack and reshape input bands into a 2D feature
matrix X

2: Normalize X
3: Compute NDVI and NDWI for all pixels
4: Define river mask: NDWI > 0.1
5: Set NDVI threshold TNDVI as 75th percentile
6: Select vegetation pixels where NDVI > TNDVI and

not in river mask
7: Extract corresponding feature vectors Xveg
8: Reduce Xveg to 4 dimensions using PCA
9: Apply k-means++ clustering with k = 2

10: Identify cluster with highest mean NDVI as vegeta-
tion

11: Assign binary labels: 1 for vegetation, 0 for non-
vegetation

12: Train a Random Forest classifier on Xveg and
pseudo-labels

13: Predict vegetation class for all pixels in X
14: Reshape predictions into 2D map Mrf
15: Remove river pixels from Mrf using NDWI mask
16: Output final mask Mfinal

Shortwave Infrared 1 [SWIR1], and Shortwave Infrared
2 [SWIR2]. Each band is loaded and converted into a
float array using the Rasterio library. A 6-dimensional
feature vector used to represent each pixel in the 3D
array, then it is converted into a 2D feature matrix by
stacking the spectral bands and normalizing the input
features. The satellite data are collected from the U.S.
Geological Survey [27], and data from Landsat 8 OLI
with cloud cover of 5%, and the bands used are Blue,
Green, Red, NIR, SWIR1, and SWIR2.

B. Vegetation and Water Index Calculation

To enhance the spectral separability of land cover
classes, two widely used spectral indices, such as NDVI
[28] and NDWI [29], are computed and given in equa-
tions 1 and 2.

NDVI =
(NIR−Red)

(NIR+Red)
(1)

NDVI values were clipped between [−1, 1] to ensure
numerical stability and used to highlight vegetation pix-
els.

NDWI =
(Green−NIR)

(Green+NIR)
(2)

The pixels with NDWI > 0.1 are heuristically iden-
tified as water regions, and subsequently excluded from
vegetation index to prevent spectral overlap with water
regions.

C. Selection of Vegetation

Pixels having high NDVI values above the 75th per-
centile are chosen to create a threshold-based mask, cal-
culated thresholds at the 60th, 70th, and 80th percentiles,
and it is constantly changing in vegetation classification
and accuracy. All pixels that overlapped with the river
mask derived from NDWI results are eliminated to refine
the output, with the NDWI threshold between 0.0 and
0.2, observing its effect on river mask performance.

D. Clustering and Dimensionality Reduction

The vegetation pixels used in Principal Component
Analysis (PCA) are kept, with the top four principal
components, in order to minimize computational com-
plexity and noise in high-dimensional spectral data. The
k-means++ algorithm is used to perform clustering on
vegetation pixels extracted using NDVI thresholding.
The k-means++ algorithm is then used to cluster these
reduced features into k=2 clusters. We have also experi-
mented with k = 2, 3, and 4 and found that k = 2 yielded
the best Dunn Index and DB Score for distinguishing
vegetation vs. non-vegetation pixels. The mean NDVI
value of each cluster is calculated in order to determine
which of the two clusters represents true vegetation.
While the other cluster is categorized as background
or noise, the one with the higher average NDVI is
designated as vegetation. In accordance with this, a
binary label mask (0 = non-vegetation, 1 = vegetation)
is made.

Algorithm 2 uses the k-means++ initialization strat-
egy to choose the initial cluster centres. This strategy
enhances clustering performance by distributing initial
centroids according to data distribution.

E. Random Forest Based Classification

The proposed methodology involves the supervised
classification of vegetation and non-vegetation pixels
using a Random Forest (RF) classifier. k-means++ clus-
tering on PCA-reduced vegetation pixels is used to
create the training labels; the cluster with the highest
NDVI is used as vegetation. The RF model is trained
and tested using an 80:20 split [30] of these pseudo-
labeled samples. As explained in Algorithm 3, the trained
classifier is then used to predict vegetation labels across
the entire dataset.

V. RESULT AND DISCUSSION

In this section, we have implemented the proposed
methodology and generated extensive results to
validate it. The final vegetation map is accurately



Algorithm 2 k-means++ Clustering Algorithm
Input: Data points X = {x1, x2, . . . , xn}, number of

clusters k
Output: Initial cluster centers for k-means

1: Choose the first center c1 uniformly at random from
X

2: for i = 2 to k do
3: for each x ∈ X do
4: Compute D(x)2, the squared distance from x

to the nearest center already chosen
5: end for
6: Choose the next center ci = x′ from X with

probability D(x′)2∑
x∈X D(x)2

7: end for
8: Proceed with the standard k-means algorithm using

the k initialized centers
9: repeat

10: Assign each point to the nearest center
11: Recompute centers as the mean of assigned points
12: until convergence

Algorithm 3 Random Forest Classification using k-
means++
Input: Feature matrix Xveg, pseudo-labels yveg
Output: Trained RF model and predicted vegetation

labels yfull
1: Split (Xveg, yveg) into training and testing sets

(80:20)
2: Train Random Forest classifier on the training set
3: Evaluate performance on the test set (e.g., accuracy,

precision, recall)
4: Apply the trained model to the full feature matrix

X to predict yfull
5: return Predicted labels yfull

detected while effectively excluded the water regions.
Visual validation using NDVI and NDWI confirmed
the reliability of the proposed methodology in
distinguishing vegetation from non-vegetation. The
source code for the proposed methodology is available
at https://github.com/somcse/An-Unsupervised-to-
Supervised-Framework-for-Vegetation-Mapping-Using-
Spectral-Indices.

A. Clustering Performance Evaluation

Two internal validation metrics are used to evaluate
the quality of unsupervised clustering on NDVI-rich
vegetation pixels using k-means++, such as Dunn Index
and Davies–Bouldin (DB) Score [31]. The DB score for
this experiment is 0.8466, better clustering is indicated
by a lower value of DB score. The Dunn Index [32]
calculates the ratio of the maximum intra-cluster distance
to the minimum inter-cluster distance. The Dunn Index

for this study is 0.3142, better clustering is indicated by
a higher Dunn score. Table I shows the result of the
above scores.

TABLE I
NORMAL RANGES FOR CLUSTERING EVALUATION METRICS

Metric Ideal Range Interpretation Score
Davies-
Bouldin
Score
(DB)

0 to 1 (↓ better) Lower values indi-
cate better cluster-
ing; 0 is optimal.

0.8466

Dunn
Index

more than 0.3
(↑ better)

Higher values
indicate compact
and well-separated
clusters.

0.3142

Fig. 3 shows a binary river mask derived from the
NDWI, where pixels with NDWI > 0.1 are classified
as water (value = 1). This thresholding effectively high-
lights river networks.

Fig. 3. River mask generated using NDWI with a threshold > 0.1.

Fig. 4. Binary clustering of vegetation pixels using k-means++.



Fig. 4 presents a binary vegetation map using the k-
means++ clustering algorithm, where pixels labeled 1
represent vegetation areas. This unsupervised approach
effectively distinguishes vegetation from other land cover
types based on spectral patterns.

Fig. 5. Vegetation classification map generated using Random Forest.

Fig. 5 shows a vegetation classification map using a
Random Forest (RF) classifier. This supervised approach
uses spectral features to accurately distinguish vegetation
from non-vegetation regions.

Fig. 6. Final vegetation map, generated after excluding river regions
using NDWI-based water masking.

Fig. 6 illustrates the final vegetation map after mask-
ing out river regions using NDWI-based water detection.

B. Comparative Analysis of Classification Models

Table II shows results about NDVI Thresholding, De-
cision Trees, Random Forest (RF), and the proposed k-
means++ and RF approach, based on accuracy, F1 score,

TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE ACROSS

METHODS

Method Accuracy
(%)

F1
Score

ROC-
AUC

NDVI Thresholding 73.2 0.512 0.812
Decision Trees 78.4 0.592 0.834
Supervised RF (random) 80.5 0.624 0.874
Ours (k-means++ + RF) 86.6 0.699 0.921

and ROC-AUC. NDVI Thresholding has 73.2% accuracy
and a relatively low F1 score of 0.512. Decision Trees
have 78.4% accuracy and an F1 score of 0.592, indicat-
ing moderate performance. k-means++ clustering with a
Random Forest classifier having accuracy (86.6%), F1
score (0.699), and ROC-AUC (0.921).

Fig. 7. Validation scores bar plot.

Fig. 7 shows the evaluation metrics, including accu-
racy, precision, recall, F1 score, ROC-AUC, and Cohen’s
Kappa, which give an analysis of the performance of
the classifier. The plot indicates that a significant per-
centage of pixels are correctly classified, with an overall
accuracy of 0.866. Although precision remained low at
0.757, exposing some false positives, the recall score of
0.836 demonstrated the sensitivity in identifying every
vegetation pixel. The mean of precision and recall is
reflected in the F1 score of 0.699, which is a reasonable
trade-off. Further, the RF ability to differentiate between
areas with and without vegetation is demonstrated by its
ROC-AUC score of 0.921.

A confusion matrix, Fig. 8, is plotted as a heat map to
visualize the classification results and the efficacy of the
suggested vegetation identification algorithm. The matrix
shows how many pixels are correctly and incorrectly
classified in the vegetation and non-vegetation classes.
With 67,456 true positives and 11762 false negatives,
an 83.6% recall is achieved. The 58,189 false positives,
which show that some non-vegetation pixels were incor-
rectly classified as vegetation, has a minor effect on the
precision. This study highlights areas that need improve-
ment, such as reducing vegetation, while confirming the
outstanding recall and overall performance.



Fig. 8. Confusion matrix showing predicted vs. true labels for
vegetation classification.

Fig. 9. ROC curve illustrating classification performance.

A Receiver Operating Characteristic (ROC), curve as
in Fig. 9 is generated to show the graphical representa-
tion of vegetation classification. The ROC curve shows
the trade-off between the true positive rate and false
positive rate at various threshold values. The Random
Forest shows a high rise towards the top-left corner,
indicating strong sensitivity with few false alarms. The
ability to differentiate between vegetation and non-
vegetation classes is shown by the Area Under the Curve
(AUC), which is 0.9207. The high AUC value shows
that the unsupervised-to-supervised hybrid technique is
flexible and effective at identifying vegetation regions
from multispectral satellite images.

VI. CONCLUSION AND FUTURE SCOPE

This study proposes an efficient hybrid approach
for vegetation detection by combining unsupervised k-
means++ clustering with Random Forest classification.
NDVI and NDWI indices are used to distinguish be-
tween vegetation and water regions in order to enhance
discrimination near river bodies. PCA is used to reduce
the dimensionality of the multispectral imagery, and k-
means++ is applied for clustering. Also, the clustering
quality is validated by validation metrics DB and Dunn.
The results are used to train the RF model, and the
classification results accuracy is validated by several
validation metrics such as accuracy, precision, F1 score,
recall, kappa score, ROC-AUC, and confusion matrix.

The proposed framework suggests a robust and label-
free method for vegetation detection. In the future, we
will add different machine learning and deep learning
models for better clustering and classification.
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