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Abstract. Accurate land use/land cover (LULC) classification is cru-
cial for understanding environmental dynamics, monitoring natural re-
sources, managing urban expansion, and promoting sustainable land
management practices. The availability of labeled datasets is a signif-
icant obstacle to accurate land use/land cover (LULC) classification in
isolated and underrepresented areas like the Barak River Basin. This
study presents an unsupervised classification on Landsat 8 satellite im-
agery, implementing several spectral indices to overcome the insuffi-
ciency of the label data set. For vegetation identification, the Normal-
ized Difference Vegetation Index (NDVI), Modified NDVI (MNDVI),
Green NDVI (GNDVI), and Ratio Vegetation Index (RVI) were calcu-
lated. Water body detection utilized the Normalized Difference Water
Index (NDWTI), Modified NDWI (MNDWTI), Water Ratio Index (WRI),
and Automated Extraction of Water Index (AEWI). For built-up area
mapping the Normalized Difference Built-up Index (NDBI), Urban In-
dex (UI), and Built-up Index (BI) were evaluated. Amid these, it came
to light that NDVI, WRI, and BI performed best for their respective
categories. Otsu’s thresholding technique was applied to further pro-
cess these determined indices in order to classify the binary imagery
of the Barak River Basin. Notwithstanding the lack of labeled training
data, the thereby generated classification output was evaluated through
ground truth verification and accuracy assessment, suggesting excellent
performance. Utilizing the highest-performing indices, we were able to
generate the label Landsat 8 imagery using an unsupervised method. In
areas with inadequate information, this technique makes it possible to
develop spatiotemporal datasets for long-term environmental monitoring
and land management, and it determines the prerequisites for scalable
LULC mapping.

Keywords: LULC - Remote sensing - Indices - Vegetation - Water -
Built-up - Otsu thresholding. .
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1 Introduction

Land use and land cover (LULC) classification is a cornerstone of geospatial
analysis, playing a crucial role in environmental monitoring, resource manage-
ment, urban planning, disaster mitigation, and policy-making. The recognition
of human impacts on natural ecosystems, sustainable land management, and
climate resilience plans at the regional and global levels are all made feasible
by timely and accurate LULC data. Remote sensing is now a vital tool for
creating LULC maps across large and varied landscapes due to the increasing
availability of satellite data [I4]. However, accurate land cover type discrimina-
tion is essential to extract meaningful LULC information from satellite imagery.
This is a challenging endeavour because of spectral overlaps, seasonal varia-
tions, and heterogeneous landscapes [31]. Spectral indices have been established
as effective measures to improve class separability by taking advantage of par-
ticular reflectance characteristics of land surface features in order to overcome
this challenge. The use of specific indices, like vegetation and water indices, can
accentuate the distinct spectral behaviours that vegetation, water bodies, and
built-up areas display in multispectral imagery [29/T5]. Yet, no single index is
universally optimal across all geographical contexts or environmental conditions.
Therefore, it is crucial to apply and compare several spectral indices to identify
the best indicators for a given area or research goal. This method of comparison
enhances classification accuracy and ensures methodological robustness, partic-
ularly in regions with complex land cover dynamics [21].

Notwithstanding these developments, a major obstacle still exists: the dearth
of high-quality, easily accessible, and labelled geospatial datasets, particularly in
areas with limited data and ecological sensitivity [7J3T]. This problem is best
illustrated by the Barak River Basin in northeastern India. Known for its rich
biodiversity, intricate hydrological networks, and critical socio-economic value,
the basin remains understudied in terms of fine-resolution LULC mapping [20].
The use of supervised machine learning techniques, which otherwise rule the
field of remote sensing-based classification, is hampered by the lack of labelled
training data [14].

This study adopts an unsupervised classification framework that incorpo-
rates several spectral indices obtained from Landsat 8 Operational Land Imager
(OLI) imagery to overcome this limitation [2I]. For vegetation identification,
the Normalized Difference Vegetation Index (NDVI), Modified NDVI (MNDVI),
Green NDVI (GNDVI), and Ratio Vegetation Index (RVI) were calculated [29].
Water body detection utilized the Normalized Difference Water Index (NDWI),
Modified NDWI (MNDWT), Water Ratio Index (WRI), and Automated Extrac-
tion of Water Index (AEWTI) [I5]. For built-up area mapping the Normalized
Difference Built-up Index (NDBI), Urban Index (UI), and Built-up Index (BI)
were evaluated. These indices are systematically compared to identify the most
responsive and discriminative features for the Barak River Basin.

Otsu’s thresholding technique is used to enhance the delineation of land cover
boundaries [I7]. In the absence of valid labels, this widely recognized histogram-
based image segmentation method calculates the optimal threshold values to
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maximize inter-class variance, enabling a completely automated and statistically
sound classification. An effective and replicable method for unsupervised LULC
mapping is achieved by the combination of threshold-based segmentation and
index-based clustering.

Using field surveys and high-resolution ancillary datasets to evaluate classifi-
cation accuracy, validation is carried out through selective ground truthing [4J10].
This validation demonstrates our hybrid methodology’s adaptability for use in
other underrepresented or data-constrained regions and validates its depend-
ability. Ultimately, an innovative and scalable geospatial framework for LULC
classification in the Barak River Basin is presented in this study. By resolving
the issues related to labeled data scarcity and improving classification through
multi-index comparison, the proposed method helps to make better decisions in
regional planning, environmental preservation, and disaster preparedness. Addi-
tionally, it highlights the critical need for adaptable techniques that can work
well in situations with limited data, a recurring problem in remote sensing, es-
pecially in most of the developing world [31].

The rest of the paper is organized as follows. Section [2] presents related work
in the field followed by Section [3] where data description is discussed, and sec-
tion [] presents the proposed methodology of the paper. Then the results and
discussion are given in section [5} Finally, we conclude this study in section [6}

2 Related Work

The Barak River is flowing parallel to the River Brahmaputra in northeast India.
Its climatic scenario is quite different from that of the Brahmaputra River basin.
The basin receives mostly orographic and cyclonic precipitation with about 300
cm of average annual rainfall. With an area of 41,000 km?2, the Barak River
basin is considered as one of the large basins in India. Urbanization and various
infrastructural activities are going on since the last couple of decades [24U5123].
As stated by Census of India 2011, the population growth rate is 17.93% in the
Barak valley [3]. The basin area is under development and on the verge of ur-
banization [24J5J6]. There is almost nil industrial growth in this area, although
some agricultural development can be seen [22]. This study relates to the pre-
stage of the adverse effect of urbanization. Rich in biodiversity and agricultural
productivity, the Barak Valley is currently facing increased anthropogenic pres-
sures such as urban expansion and deforestation, leading to substantial changes
in land use/land cover (LULC) dynamics [2§].

Remote sensing-based spectral indices are instrumental for monitoring vege-
tation health, water bodies, built-up areas, and soil exposure. The Normalized
Difference Vegetation Index (NDVI) is widely used to evaluate vegetation den-
sity, while the Soil-Adjusted Vegetation Index (SAVI) proposed by [9] is partic-
ularly beneficial in arid and sparsely vegetated areas. NDWI (Normalized Dif-
ference Water Index) and its enhanced version MNDWT are effective for water
feature detection [1532]. In the paper [32] they modified the NDWI by replac-
ing the NIR band with the mid-infrared band, significantly improving water
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feature extraction in urban contexts. Similarly, [25] demonstrated that integrat-
ing MNDWI with Digital Elevation Model (DEM) and groundwater data yielded
a classification accuracy of 96.9% in Punjab. The paper [I6] comparing three in-
dices NDVI,NDWI and NDBI reported a strong negative correlation between
NDVI/NDWI and land surface temperature (LST), and a positive correlation
with NDBI, achieving an R? of 0.699 when using all three indices. Compara-
ble results were observed in Bangladesh by [8], where NDVI showed a stronger
correlation with forest cover changes than SAVI. A study investigated seasonal
variations of NDVI, NDBI, and NDWI using LISS-III data, highlighting the tem-
poral sensitivity of these indices [I819].The study conducted in the paper [33]
monitored urban growth from 1991 to 2019 using NDVI and NDBI, revealing
significant vegetation loss and urban expansion. For built-up area detection, in-
dices such as NDBI [34], UI, and MNDBI have proven effective. [2] developed a
new spectral index for detecting built-up areas using Landsat-8 imagery, outper-
forming traditional indices in both accuracy and kappa values. Reviews by [12/11]
comprehensively compared built-up area indices, addressing their respective limi-
tations. Computing vegeation, water and bulit-up the paper [I] applied seasonal
thresholds using NDVI, NDWI, MNDWI, and NDBI to classify LULC types,
achieving 90.2% overall accuracy and a kappa coefficient of 0.84. Thresholding
techniques such as Otsu’s method [26] is widely used for binary classification,
minimizing intra-class variance to identify optimal thresholds. [27] demonstrated
the advantage of multi-Otsu thresholding in segmenting Acute Myeloid Leukemia
(AML) images, achieving 83.81% accuracy with Nalve Bayes—surpassing the
static Otsu method’s 75.35%. Studies that incorporate multi-Otsu thresholding
for LULC classification have shown improved delineation of vegetation, built-up
areas, and water bodies in heterogeneous landscapes. However, these methods
often require preprocessing for best performance. Accuracy assessment is funda-
mental to evaluating remote sensing classifications. The Cohen’s Kappa coeffi-
cient, commonly used alongside overall accuracy, provides a robust measure by
accounting for chance agreement. In the paper [2], high kappa values validated
the effectiveness of the newly proposed index.

After studying the recent literature, we find that there are multiple spectral
indices available for LULC classification, but which indices give the best result
need a comparison. So, we have applied multiple indices for LULC classes like
vegetation, water bodies, and built-up areas and computed the best threshold to
classify into binary class. Using the best binary class, we get the unsupervised
label data set for our study area.

A comparative analysis of the releated recent work on LULC classification
using spectral indices is demonstrated in the Table |1} The table summarizes the
methods, indices used, and reported accuracy metrics. It highlights how the pro-
posed unsupervised method achieves superior Kappa agreement across key land
cover classes while operating without labelled data.
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Table 1. Comparative Analysis of Relevant Works in LULC Classification Using Spec-

tral Indices and Thresholding

Study (Ref) |Indices Method Type |Key Findings Limitations
Used
Bencherif et|NDVI, Supervised (Sea-|Achieved high|Requires labeled
al. [1] NDWTI, sonal Thresholds)|kappa (0.84) for|data and seasonal
MNDWI, LULC classification|tuning
NDBI
Bouzekri  et|New Built-up|Supervised Developed im-|Limited to built-up
al. [2] Index proved built-up|areas, lacks general
index (accuracy|applicability
- 92.66%) better
than NDBI
Morsy & Hadi|NDVI, Statistical (Cor-|Demonstrated R? =|Not focused on clas-
[16] NDWI, NDBI|relation with|0.699 linking LULC|sification accuracy
LST) to temperature
Singh et al.MNDWI Supervised Achieved 96.9% |Focused only on wa-
[25] + DEM +|Fusion-based accuracy for water|ter; uses ancillary
Groundwater classification data
Sun et al. [26]|Otsu + Ran-|Hybrid (Thresh-|Improved segmen-|Requires training
dom Forest  |olding + ML) tation in seasonal|data; computation-
and snowy areas ally intensive
Xu [32] MNDWI Thresholding Improved water de-|Applied only to wa-
lineation in urban|ter class
areas
Suryani et al.|Multi-Otsu  |Unsupervised Multi-Otsu im-|Study focused on
[27] (Image Segmen-|proved  classifica-|medical images, not
tation) tion (83.81%) vs.|remote sensing
Otsu (75.35%)
Proposed NDVI, Unsupervised |High kappa|May require em-
‘Work MNDVI, + Otsu|scores: NDVI|pirical validation
GNDVI, Threshold- (0.93), WRI|in different ter-
RVI, NDWI, |ing (0.83), BI (0.81);|rains
MNDWI, general-purpose
AWEI, WRI, LULC mapping
NDBI, UI, BI

3 Data Description

In this section we have discussed the process of data collection methods and
selection of the desired area for the study. The Landsat Series has provided
the longest temporal coverage, spanning over 52 years since 1972. Therefore,
we utilized Landsat 8 data accessed from the United States Geological Sur-
vey (USGS) EarthExplorer platform [30]. The data was acquired by Landsat
8 on 25-February-2025 at 04:18:20.7102020Z, ensuring cloud-free (<5%)
and radiometrically stable conditions suitable for land use/land cover (LULC)

analysis.
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Fig. 1. Geographic extent of the study area Barak River basin

The area of study is shown in figure [1] The figure’s resolution is 30 me-
ters, and the QGIS software clips it to our desired area. It has four corners,
the upper-left corner coordinate is 24.92051°N, 92.69716°E, upper-right cor-
ner coordinate is 24.91885°N, 92.89368°E and lower-right corner coordinate is
24.74158°N, 92.89336°E, lower-left corner coordinate is 24.74058°N, 92.69831°E
this makes a 2D top-view picture of Barak River Basin. In the figure we can
clearly see the most important city of Barak River Basin, Silchar and its sur-
rounding rivers and vegetation areas.

4 Proposed Methodology

Recently, geospatial data has proven to be highly effective in producing detailed
and comprehensible results for studying Land Cover and Land Use (LULC)
across different regions. Like every technology, it comes with its advantages
and limitations. One of the major challenges is the unavailability of labeled
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datasets for specific areas. Using data from the Landsat 8 Operational Land
Imager (OLI) [2], this work uses a multi-index method to address the absence
of labeled datasets for the Barak River Basin. A multi-index approach enhances
classification accuracy, reliability, and interpretability in remote sensing applica-
tions. It is an essential part of contemporary LULC mapping frameworks and is
particularly important in areas with limited data, complex landscapes, or studies
involving unsupervised techniques. The methodology encompasses satellite data
preparation, spectral index computation for land cover categorization, unsuper-
vised classification, and final validation through ground truthing. Spatial data
has been classified into various categories and classes. In this study, we focus
primarily on three classes and their complementary classes, as shown in Table
using different spectral indices. Otsu’s thresholding [I7] method is applied to
the outcomes of each index to derive meaningful binary classifications. Each re-
sulting binary image is then normalized to a common scale to allow comparison
among indices and with the ground truth data.

Table 2. Name and description of diffrent LULC class scheme.

S.No.|Class Name Description of Class
1 |Vegetation Forest, cropland, shrubland and grassland.
2 |Non-Vegetation |Areas excluding vegetation-covered regions.
3 |Water Bodies Rivers, lakes, bays, and estuaries.
4 |Non-Water Bodies|Areas excluding water bodies.
5 |Built-up Urban residential, commercial, industrial areas, vacant land,
roads, transportation.
6 |Non-Built-Up Areas excluding built-up regions.

Figure [2|illustrates the complete methodology, detailing each step involved
in the implementation of the proposed system. Landsat 8 imagery has 11 bands,
for our proposed method required only 5 bands: band 2 for blue, band 3 for green,
band 4 for red, band 5 for near-infrared (NIR), and band 6 for short-wave infrared
(SWIR). Using those bands, indices are calculated for the specific classes. All
index results have been evaluated to the Otsu threshold in order to get the
binary-classified images. The kappa score for each index is obtained by comparing
all of the binary imagery with the ground truth. The final unsupervised labelled
data is generated using the most significant index in its class.

In the following subsections, we have discussed the data acquisition process,
preprocessing techniques, and implementation of selected spectral indices to the
acquired dataset. Furthermore, we provide a comprehensive overview of unsu-
pervised classification methods and thresholding techniques on the outputs we
got, and then we compare them to ground truth data to make sure they are
correct.
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Fig. 2. Methodology workflow for LULC classification using spectral indices

4.1 Satellite Data Acquisition and Preprocessing

Since 1972, NASA and USGS have worked together to develop the Landsat
program, which offers reliable satellite imagery for LULC (land use and land
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cover) analysis. Through the USGS Earth Explorer portal, surface reflectance
data from Landsat 8, which is equipped with the Thermal Infrared Sensor (TIRS)
and Operational Land Imager (OLI), were acquired for this study. The details
of these bands are presented in Table [2| To ensure that vegetation, populated
areas, and water bodies could be detected, imagery with less than 5% cloud cover
and optimum seasonal conditions was chosen. To get the dataset ready for index
computations, preprocessing techniques like band stacking, spatial clipping, and
resampling were executed in QGIS. In the Table [3] first column is used for the
types of sensors present in Landsat 8, second column for band number, column
three for band name, column four shows the wavelength range taken by each
band in micrometers (one millionth of a meter) and column five used for the
resolution (in meters) for each band.

Table 3. Landsat 8 OLI and TIRS Band Specifications

S.No.|Instrument|Band  |Band Name Wavelength ~ Range|Resolution
(jrm) (m)
1 |OLI Band 1 |Coastal Aerosol 0.43 - 0.45 30
2 |OLI Band 2 |Blue 0.45 — 0.51 30
3 |OLI Band 3 |Green 0.53 — 0.59 30
4 |OLI Band 4 |Red 0.64 — 0.67 30
5 |OLI Band 5 |Near-Infrared (NIR)|0.85 — 0.88 30
6 |OLI Band 6 |[SWIR 1 1.57 — 1.65 30
7 |OLI Band 7 |[SWIR 2 2.11 - 2.29 30
8 |OLI Band 8 |Panchromatic 0.50 — 0.68 15
9 |OLI Band 9 |Cirrus 1.36 — 1.38 30
10 |TIRS Band 10|Thermal Infrared 1 |10.6 — 11.19 100  (resam-
pled to 30)
11 |TIRS Band 11|Thermal Infrared 2 {11.50 — 12.51 100 (resam-
pled to 30)

4.2 Spectral Index Computation

Every index is designed to indicate a particular surface characteristic using com-
binations of spectral reflectance bands. Vegetation, water bodies, and built-up
areas are the most significant classes for Land Use and Land Cover (LULC)
classification. The proposed methodology incorporates several spectral indices
as discussed below.

4.2.1 Vegetation Indices : For Landsat 8 imagery, Bands 3 (Green), 4
(Red), and 5 (Near-Infrared, NIR) are used to compute vegetation indices in-
cluding NDVI, MNDVI, GNDVI, and RVI:

— Normalized Difference Vegetation Index (NDVT), which is calculated as (NIR
- RED) / (NIR + RED) where NIR is band 5 and RED is band 4.
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— Modified Normalized Difference Vegetation Index (MNDVTI), which is calcu-
lated as (NIR - RED) / SQRT(NIR + RED + 1) where NIR is band 5 and
RED is band 4.

— Green Normalized Difference Vegetation Index (GNDVI), which is calculated
as (NIR - GREEN) / (NIR + GREEN) where NIR is band 5 and GREEN
is band 3.

— Ratio Vegetation Index (RVI), which is calculated as (NIR / RED) where
NIR is band 5 and RED is band 4.

More positive values are more likely to indicate vegetation areas, while more
negative or zero values resemble non-vegetation areas.

4.2.2 Water Indices : For detecting water bodies, Landsat 8 Bands 3 (Green),
4 (Red), 5 (NIR), and 6 (SWIR1) are employed to calculate NDWI, MNDWI,
AWEI, and WRI:

— Normalized Difference Water Index (NDWTI), which is calculated as (GREEN
- NIR) / (GREEN + NIR) where NIR is band 5 and GREEN is band 3.

— Modified Normalized Difference Water Index (MNDWT), which is calculated
as (GREEN - SWIR1) / (GREEN + SWIR1) where GREEN is band 3 and
SWIRI1 is band 6.

— Automated Water Extraction Index (AWEI), which is calculated as 4 x
(GREEN - SWIR1) - (0.25 x NIR + 2.75 x SWIR1) where NIR is band 5,
GREEN is band 3, and SWIR1 is band 6.

— Water Ratio Index (WRI), which is calculated as (GREEN + RED) / (NIR
+ SWIR1) where NIR is band 5, RED is band 4, GREEN is band 3, and
SWIR1 is band 6.

More positive values are more likely to indicate water bodies, while more
negative or zero values resemble non-water bodies.

4.2.3 Built-up Indices : To identify built-up regions, indices such as NDBI,
UI, and BI are calculated using Bands 2 (Blue), 3 (Green), 4 (Red), 5 (NIR),
and 6 (SWIRI):

— Normalized Difference Built-up Index (NDBI), which is calculated as (SWIR1
- NIR) / (SWIR1 + NIR) where NIR is band 5 and SWIRI is band 6.

— Urban Index (UI), which is calculated as (SWIR1 - BLUE) / (SWIR1 +
BLUE) where BLUE is band 2 and SWIR1 is band 6.

— Built-up Index (BI), which is calculated as BI = Normalized Difference Built-
up Index (NDBI) - Normalized Difference Vegetation Index (NDVI).

More positive BI values generally indicate built-up surfaces, while negative
or zero values suggest non-urban features.



Land Use/Land Cover Classification with Spectral Indices 11

4.3 Unsupervised Classification and Thresholding

In this section, we discuss the techniques of unsupervised classification, thresh-
olding, and clustering. To transform spectral index information into meaning-
ful land cover classes, a structured multi-step classification methodology was
adopted.

4.3.1 Index Normalization : All spectral indices are normalized to a com-
mon scale between 0.0 and 1.0 to enable reliable and meaningful comparisons
between different spectral indices. This step is very crucial to avoid the bias
included by differing value ranges. For normalization we performed min-max
scaling [I3] , where each pixel value was transformed using the equation:

- Xmin
Normalized Value = m (1)

where

— X represents the original index value,
— Xmin denotes the minimum value of that index within the dataset,
— Xmax denotes the maximum value of that index within the dataset.

4.3.2 Otsu’s Thresholding : Otsu’s method [I7] was applied to each nor-
malized index layer to compute optimal threshold values. This algorithm max-
imizes the inter-class variance and minimizes the intra-class variance, resulting
in an effective binary classification. It enables separation of classes such as:

— Vegetation vs. Non-vegetation,
— Water vs. Non-water,
— Built-up vs. Non built-up.

The step by step process to compute otsu thresholding is discussed in the algo-
rithm 1.

4.3.3 Clustering and Masking Every pixel of the data was evaluated using
the normalized indices of built-up, water, and vegetation and allocated to the
class with the highest index value. The masking operation is applied to segregate
every land cover class. Binary masks were generated for each class using Otsu’s
thresholding. Utilizing the unsupervised classification approach, the comparative
index-based clustering finally classified the pixels into vegetation, water bodies,
and built-up areas without the need for any pre-labeled training data.

4.4 Ground Truthing

The ground truth data is gathered by physically reaching the ground truth points
and capturing the images of that point with its coordinates. The steps of gener-
ating the ground truth are discussed below.
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Algorithm 1 Otsu’s Thresholding Algorithm
1: Input: Grayscale image with L gray levels [1,2,..., L]
Output: Optimal threshold k*
Compute histogram of the image
Normalize histogram: p; = &, where n; is the number of pixels at level ¢ and N is
total pixels
Initialize: w(k) < 0, (k) ¢ 0, pr < o5 i piy 0Zayx ¢ 0, k" <0
fork=1to L —1do
Compute w(k) = S5 | pi
Compute p(k) = 3¢ i p;
9: if w(k) =0 or w(k) =1 then
10: continue
11: end if
12: Compute between-class variance:

2o w(k) — u(R)
o (B) = "5 (1= w(k)

13: if o2(k) > 02 . then

14: O2ax — 02 (k)
15: k™ <k

16: end if

17: end for

18: return k*

— For capturing the image with coordinates, we used GPS Map Camera Ap-
plication for 102 random points within the study area.

— The data must be documented and stored in structured .csv format to
import in QGIS software for generating the georeferenced ground truth in
.tiff format.

In figure (3| we showed the collected data, with samples of the vegetation class
(a) and (f), the built-up class (b) and (e), and finally the water class (c) and (d)
with the coordinates.

5 Result and Validation

In this section we have discussed results and compared the outputs with ground
truth. The selected sample points are compared with classified results to achieve
accuracy. Accuracy metrics such as kappa Coefficient were calculated to evaluate
the performance of the classification.

5.1 Classification Result Comparisons

Visual comparisons between the classified results and the ground truth are car-
ried out across three major land cover categories:
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(a) Label: Vegetation, Lat
24 6BT345° Long: 92.750805°

(b) Label: Built-up, Lat:
24 6TT9TT, Long 92 750607

(c) Label: Water, Lat:
24 GTTITT®, Long 92750607

(d) Label: Water, Lat
24 7077777, Long 92 767176°

(e) Label: Built-up, Lat:
24 677977°, Long 92750607

(f) Label: Vegetation, Lat
247101467, Long 92.769278°

Fig. 3. sample of ground truth

5.1.1 Vegetation Classification Comparison : In figure[d] the green color
refers to the vegetation areas and the red color area refers to the non-vegetation
areas. Those are the binary classified images after applying otsu’s thresholding.
NDVI (a) and MNDVI (b) show very similar and almost accurate results. GNDVI
(¢) produces inaccurate results with marking non-vegetation areas as vegetation.
RVI (d) produces average and noisy results

5.1.2 Water Body Classification Comparison : In figure the blue
color refers to the water bodies and the white color area refers to the non-water
bodies. Those are the binary classified images after applying otsu’s thresholding.
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(a) NDVI (b) MNDVI

1.0 1.0

300 400 500 600
(c) GNDVI

0.0 0.0

Fig. 4. (a) NDVI, (b) MNDVI, (¢) GNDVI and (d) RVI indices output (vegetation).

WRI (d) gives the best output among others. NDWI (a) and MNDWTI (b) show
similar and almost accurate results. AWEI (c) produces inaccurate results with
marking non-water bodies as water bodies.

5.1.3 Built-up Area Classification Comparison : In figure [6] the black
color refers to the built-up area and the white color area refers to the non-built-up
bodies Those are the binary classified images after applying otsu’s thresholding.
BI (c) gives the best output among others. NDBI (a) show similar and almost
accurate results. UI (c) produces inaccurate results with marking non-built-up
areas as built-up areas.

5.2 Kappa Coefficient (k)

The Kappa coefficient is a statistical metric that measures the agreement be-
tween the observed (ground truth) and predicted classifications, adjusted for
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(a) NDWI

(b) MNDWI
1.0 0 - 5— — 1.0
¢
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0 100 200 300 400 500 600 ’ 0 100 200 300 400 500 600
(d) WRI
2

.
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6001

Fig. 5. (a) NDWI, (b) MNDWI, (¢) AWEI and (d) WRI indices output (Water Bodies).

chance agreement. It is calculated as:

Po — Pe
= — 2
" ]-_pe ()

Where:

— po, = observed agreement
— pe = expected agreement by chance

In table , Kappa values (k) are shown, the range and its significance level.
More the value close to +1 more it is close to almost perfect agreement and 0
or less than zero says no agreement. The comparative result of all indices with
Ground Truth(GT) is shown with the kappa score and the final rank of each cate-
gory in table [5] For vegetation classification, the NDVI performed the best with
0.93 Kappa score, showing a very strong match with ground truth.NDVT achieved
the highest score for vegetation due to its proven sensitivity to chlorophyll con-
tent and dense vegetation. MNDVI and RVI performed well, but GNDVI showed
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Fig. 6. (a) NDBI,(b) UI, and (c) BI indices output (Built-up Area).

Table 4. Interpretation of Kappa Coefficient Values

S.No.

Kappa Value (k)

Level of Agreement

1

S U W N

<0
0.01 - 0.20
0.21 - 0.40
0.41 - 0.60
0.61 — 0.80
0.81 — 1.00

No agreement
Slight agreement
Fair agreement
Moderate agreement
Substantial agreement
Almost perfect agreement

poor results for this Barak River Basin area.MNDVT is designed to reduce atmo-
spheric and background noise, which may have reduced contrast in dense tropical
vegetation such as those found in the Barak River Basin and it affects the result
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of MNDVI. RVI commonly performed well for open, dry vegetation zones, it is
sensitive to illumination variations and soil background, which are common in
the Barak Basin due to its hilly terrain and heterogeneous soil which can cause
saturated results. GNDVI is very sensitive to chlorophyll content but less effec-
tive in mixed vegetation-soil backgrounds which may cause poor results in the
Barak River Basin. For identifying water bodies, the WRI achieved the high-
est Kappa score (0.83), making it the most suitable among other tested water
indices.WRI effectively enhances the spectral response of water features while
suppressing the signal from vegetation and soil with best results in the Barak
River Basin area. MNDWI and NDWI offered moderate accuracy, but AWEI
performed very poorly for this Barak River Basin area. MNDWTI uses a SWIR
band which can also reflect from exposed soil, wet soil and sandbanks, reducing
water detection accuracy. NDWI performs well in open water detection, but in
the Barak Basin, sediment-laden water and mixed water-vegetation pixels lead
to misclassification and reduce its efficacy. AWEI is designed to remove shad-
ows effectively in urban scenes or cloud-shadow environments, but we use less
than 5% cloudy data and confuse water with dark shadows from dense forest or
steep slopes, leading to poor detection. For built-up area detection, the Built-
up Index (BI) scored highest (0.81), and NDBI shows average performance.BI
achieved the best results among built-up indices because it captures the con-
trast between built-up surfaces and their surroundings, especially in urban-rural
transition zones like the Barak River Basin. The Urban Index (UI) showed weak
agreement for this Barak River Basin area. NDBI uses the difference between
SWIR and NIR bands. It can confuse bare soil and dry riverbeds with urban
structures, which are common in the Barak Basin. The Urban Index is optimized
for high-density urban zones, which are rare in the Barak River Basin, resulting
in a very low Kappa score.

Table 5. Kappa Scores and Ranks for Indices by Category

Category |Index vs Ground Truth|Kappa Score|Rank
NDVI vs GT 0.9324 1st
Vegetation MNDVI vs GT 0.8201 2nd
RVI vs GT 0.8164 3rd
GNDVI vs GT 0.2844 4th
WRI vs GT 0.8283 1st
MNDWI vs GT 0.6329 2nd
Water Bodylpwy vs gr 0.6065 | 3rd
AWEI vs GT 0.1409 4th
BI vs GT 0.8144 1st
Built-up NDBI vs GT 0.7780 2nd
Ul vs GT 0.1327 3rd
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5.3 Unsupervised Classified Result

In our study NDVI, WRI, and BI proved to be the most effective indices in
their respective categories. Utilizing those indices we are able to generate the
final unsupervised label data shown in Figure 7. Where the red color shows
the built-up area, blue color resembles all types of water bodies, green shows
the vegetation area and lastly black incorporates the background.In conclusion,
by implementing NDVI, WRI and BI we are able to label the data using this
unsupervised proposed methodology.

Label Land Cover Classification

Builtup

Water

Vegetation

Background

Fig. 7. Visualization of NDBI, Ul, and BI indices.

6 Conclusion and Future Scope

The supervised classification plays a crucial role in remote sensing data analysis,
but to achieve this requires a sufficient amount of label data set. The Barak
River Basin area is lacking on that label data set so it is important to improvise
unsupervised methods for this region.The proposed methodology successfully
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overcomes the problem for Barak River Basin. This study shows, among multiple
spectral indices applied, the NDVI proved to be the most effective for vegetation
classification, the WRI performed best among other indices in detecting water
bodies, and the BI worked accurately to evaluate built-up areas. Utilizing these
top-performing indices, we successfully generated an unsupervised LULC clas-
sification for the Barak River Basin despite the limitation of having no labeled
datasets.

In future, this methodology can be used for the development of a large-scale,
temporally rich LULC dataset for the Barak River Basin. That dataset could be
used for spatiotemporal change analysis, supporting environmental monitoring,
urban expansion studies, flood risk assessment, and land management planning
in the region. With further integration of high-resolution satellite data and lim-
ited ground truthing, this technique can evolve into a scalable, semi-automated
pipeline for long-term geospatial monitoring across similar underrepresented and
ecologically sensitive regions.
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